点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:天天彩票手机版APP_天天彩票必赚方案
首页>文化频道>要闻>正文

天天彩票手机版APP_天天彩票必赚方案

来源:天天彩票下载2024-04-28 17:48

  

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

天天彩票手机版APP

为什么黄桃会被做成罐头?******

  最近,黄桃罐头可谓是一罐难求。不少网友表示:“小时候每次发烧感冒,妈妈都会给我买黄桃罐头冰镇吃”“东北小孩,哪个童年时代,生病了不得吃一罐罐头?”

  那么,你知道好端端的黄桃为什么要被做成罐头?为什么黄桃罐头可以在东北“封神”吗?

  黄桃有哪些特点?

  黄桃不易保存。黄桃是最易腐烂变质的水果之一,采摘以后,通常只能保存四五天。

  黄桃自身特性决定它适合做罐头。黄桃具备三个特点:肉黄、黏核、不溶质,反而都是做罐头的优势。黏核的黄桃靠近果核的果肉不会被染成红色,做成罐头颜色更漂亮;黄桃果肉坚硬,纤维少,经过高温蒸煮后果肉依然紧实不散,汤汁金黄清亮,做出的罐头颜值高、卖相好。

为什么黄桃会被做成罐头?

图源:摄图网

  黄桃加工成罐头可以有效改良黄桃的口感。黄桃本身偏酸,加上白糖蒸煮过后,酸甜可口,口感更佳,满足大众挑剔的口味。

  罐头类的食品防腐剂很多吗?

  有些人很喜欢吃水果罐头,却不太敢吃,觉得罐头保质期很长,肯定添加了许多防腐剂,吃了可能会对身体不好。但事实却是,水果罐头一般没有防腐剂,因为不需要。

  新鲜水果变坏是因为受到了有害微生物的污染,微生物靠着水果中的营养进一步繁殖,进一步加剧水果的腐烂变质。 而罐头是新鲜水果经过清洗、挑选、去核等工序后进一步加工的,会经过高温杀菌处理。先在85℃条件下,恒温杀菌10分钟,然后再在92℃条件下继续杀菌10~12分钟,最后再把氧气排干净,形成负压,密封保存起来。有的是在121℃条件下直接灭菌20分钟以上。

为什么黄桃会被做成罐头?

水果罐头的工艺流程 图源:参考文献

  整个流程下来不仅已经不含有致病性微生物,而且也不含有在通常温度下可繁殖的非致病性微生物。外面的也进不去,所以黄桃罐头就不需要防腐剂了。

  其他罐头基本也不含防腐剂。目前我国的罐头生产工艺,大多数罐头生产厂家都靠灌装密封和长时间超高温加热来进行灭菌处理,这样处理以后,再顽强的细菌微生物也活不了啦,也不需要防腐剂帮忙!因此,你只要注意查看罐头的配料表就会发现,市面上的罐头基本都不含防腐剂。偷偷说一句,防腐剂也要钱啊!

  黄桃罐头营养价值高吗?

  有人觉得黄桃罐头没有营养,不如直接吃黄桃。这样的想法可就错了。

  罐头里的水果都很新鲜的,很多都是在刚摘下来不久的时候就被做成罐头了。所以,黄桃罐头的桃肉是很新鲜的!

  罐头里通常还会额外添加维生素C抗氧化、延长保质期,所以维生素C含量可能比新鲜黄桃更有优势。黄桃最值得一提的营养是类胡萝卜素,无论是鲜果还是罐头,二者含量差异都不大。它可以在体内转化为维生素A,对眼睛的健康有益。

为什么黄桃会被做成罐头?

图源:摄图网

  虽然罐头一般都经过了高温灭菌处理,一些维生素C这样不耐热的营养素会被破坏,但是还有一些耐热的维生素和营养素都还是被完完整整地保存下来了。所以,只能说有些罐头的营养比新鲜水果蔬菜略微少一些,但绝对不是毫无营养!

  不过在出现咳嗽症状时,建议还是要少吃。山西医科大学第二医院呼吸与危重症医学科副主任高晓玲提醒,食用黄桃罐头这样的甜食会加重咳嗽。一方面是因为甜食可直接刺激咽喉部位的神经,反射性地引起咳嗽,使咳嗽加重;另一方面是因为糖会刺激咽喉黏膜,导致咽喉部分泌物增加,加之糖的黏性较大,使分泌物更加黏稠,从而导致痰液不易咳出,并加重咳嗽。还有咳嗽如果是呼吸道感染引起的症状,甜食中的糖分会导致细菌大量滋生繁殖,所以会加重咳嗽。

  来源:人民日报健康客户端、中国新闻网、生命时报、科普中国、健康热点科普号、武汉市场监管

  参考文献:江舰,尤逢惠,朱莉昵. 黄桃罐头加工工艺技术研究[J]. 农产品加工,2017,(09):32-34.

  整理:刘雪洁 蔡琳

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 《深海》:未能平衡好故事与技术之间的关系

  • 驻丹麦大使邓英将离任 曾任外交部礼宾司副司长

独家策划

推荐阅读
天天彩票下载app扬州瘦马:二十四桥边的凄惨群体
2024-07-25
天天彩票骗局一场海战催生现代天气预报
2024-06-25
天天彩票客户端杨幂炸臭豆腐邓伦泡脚
2024-07-01
天天彩票规则死党移居国外买壕气别墅 客厅可赏180°无敌美景
2024-04-16
天天彩票走势图变味的租房“生意经”
2024-07-25
天天彩票赔率新春走基层丨“兔子村”的兔年愿景 赣鄱湿地有“诗意”
2024-04-14
天天彩票官网 APP疯狂采集个人信息 有的存储时间长达10年
2024-03-05
天天彩票投注周杰伦陪岳父逛古董市集 大吃美食情同父子
2024-07-09
天天彩票客户端下载 下周穿什么 | 这是什么神仙裤子!换腿术你听过吗?
2024-03-18
天天彩票返点警犬追捕嫌犯误撞豪猪 脸上被扎200根刺
2024-06-12
天天彩票玩法台名嘴曝有更震惊者参选
2024-03-07
天天彩票代理粤网文【2017】6527-1578号
2024-10-06
天天彩票官网网址蔚来否认轿车项目叫停:规划开发仍在进行
2023-12-03
天天彩票攻略蔡依林接陌生来电被问是否单身 回应后被挂电话
2024-04-22
天天彩票官方网站贝尔赛后脱队直奔机场!西媒暴怒:皇马是否应封杀他?
2024-06-06
天天彩票漏洞 美两艘军舰28日通过台湾海峡?中国外交部回应
2024-04-27
天天彩票注册 超级英雄的闲暇 蝙蝠侠的休闲时刻
2024-01-25
天天彩票开奖结果举报邮箱:jubao@vip.163.com
2024-08-26
天天彩票登录 花808万进耶鲁!21岁中国女孩卷入美国舞弊案,最贵的花4300万
2024-05-21
天天彩票手机版游客三亚夜潜拣螺被困礁石 1人溺亡
2024-01-14
天天彩票充值你好,内蒙古|江苏|山西|宜昌|山东|安徽
2024-07-19
天天彩票官网平台海关总署:防止柬埔寨非洲猪瘟传入我国
2024-07-27
天天彩票平台 三星手机重返中国市场,Galaxy S10率先破局
2024-08-13
天天彩票网投2023“欢乐春节”:五洲同庆中国年 文旅交流“开门红”
2024-06-21
加载更多
天天彩票地图